
Shox96 - Guaranteed Compression of Printable

Short Strings

Arundale R, Charumathi A, Harsha N

February 8, 2019

Abstract

We formulate a hybrid encoding method with which short strings could
be compressed using context aware pre-mapped codes resulting in surpris-
ingly good ratios.

We also go on to prove that this technique can guarantee compression
for any English language sentence of minimum 3 words.

1 Summary

Compression of Short Strings of arbitrary lengths have not been addressed suf-
ficiently by lossless entropy encoding methods so far. Although it appears in-
consequential, space occupied by such strings become significant in memory
constrained environments such as Arduino Uno and when attempting storage of
such independent strings in a database. While block compression is available for
databases, retrieval efficiency could be improved if the strings are individually
compressed.

2 Basic Definitions

In information theory, entropy encoding is a lossless data compression scheme
that is independent of the specific characteristics of the medium [1].

One of the main types of entropy coding creates and assigns a unique prefix-
free code to each unique symbol that occurs in the input. These entropy en-
coders then compress data by replacing each fixed-length input symbol with the
corresponding variable-length prefix-free output codeword.

According to Shannon’s source coding theorem, the optimal code length for
a symbol is −logbP , where b is the number of symbols used to make output
codes and P is the probability of the input symbol [2]. Therefore, the most
common symbols use the shortest codes.

The most popular and most used method (even today) for forming optimal
prefix-free discrete codes is Huffman coding [3].

In contrast to entropy encoding, there are various other approaches to lossless
coding including Lempel-Ziv coding [4] and Burrows-Wheeler coding [5].

1

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

3 Existing techniques - Smaz and shoco

While technologies such as GZip, Deflate, Zip, LZMA are available for file com-
pression, they do not provide optimal compression for short strings because
the symbol-code mapping also needs to be sent along with the compressed bit
stream. Eventhough these methods compress far more than what we are propos-
ing, these methods often expand the original source because the symbol-code
mapping also needs to be attached to aid decompression.

To our knowledge, only two other competing technologies exist - Smaz and
shoco.

Smaz is a simple compression library suitable for compressing very short
strings [9]. It was developed by Salvatore Sanfilippo and is released under the
BSD license.

Shoco is a C library to compress short strings [10]. It was developed by
Christian Schramm and is released under the MIT license.

While both are lossless encoding methods, Smaz is dictionary based and
Shoco classifies as an entropy coder [10].

In addition to providing a default frequency table as model, shoco provides
an option to re-define the frequency table based on training text [10].

4 This research

We propose a hybrid encoding method which mainly relies on entropy encoding
method for compression.

Unlike shoco, we propose a fixed frequency table generated based on the
characterestics of English language letter frequency. We re-use the research
carried out by Oxford University [7] and other sources [6] [8] and come out with
a unique method that takes advantage of the conventions of the language.

We propose a single model that presently is fixed because of the advantages
it offers over the training models of shoco.

The disadvantage with the training model, although it may appear to offer
more compression, is that it does not consider the patterns that usually appear
during text formation.

We can actually see that this performs better than pre-trained model of
shoco (See performance section).

For supporting other languages and types of text, we propose to use dif-
ferent models tailored to each of them, considering the patterns of the specific
language.

Unlike smaz and shoco, we assume no a priori knowledge about the input
text. However we rely on a posteriori knowledge about the research carried out
on the language and common patterns of sentence formation and come out with
pre-assigned codes for each letter.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 2

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

5 Model

In the ASCII chart, we have 95 printable letters starting from 32 through 126.
For the purpose of arriving at fixed codes for each of these letters, we use two
sets of prefix-free codes.

The first set consists of 11 codes, which are: 00, 010, 011, 100, 1010, 1011,
1100, 1101, 1110, 11110, 11111. The second set consists of 5 codes, which are
0, 10, 110, 1110, 1111.

With these two sets of codes, we form several sets of letters as shown in the
table below and use some rules based on how patterns appear in short strings,
to arrive at frequency table.

code → 10 0 110 1110 1111
↓ code Set 1 Set 1a Set 1b Set 2 Set 2a Set 3 Set 3a
00 switch l / L term switch . switch @
010 sp / tb c / C f / F 9 - ; ?
011 e / E cr+lf y / Y 0 , : ’
100 t / T d / D v / V 1 / < ˆ
1010 a / A h / H k / K 2 = > #
1011 o / O u / U q / Q 3 + *
1100 i / I p / P j / J 4 sp “ !
1101 n / N m / M x / X 5 ({ \
1110 s / S b / B z / Z 6) } |
11110 r / R g / G rpt 7 $ [˜
11111 Set2a / & w / W dict 8 %] ‘

6 Rules

6.1 Basic rules

• It can be seen that the more frequent symbols are assigned smaller codes.

• Set 1 is always active when beginning compression. So the letter e has the
code 011, t 100 and so on.

• If the letter in Set 1a needs to be encoded, the switch code is used followed
by 0 to indicate Set 1a. So the letter l is encoded as 00000, c as 000010
and so on.

• Similarly, if the letter in Set 1b needs to be encoded, the switch code is
used followed by 110. So f is encoded as 00110010, y as 00110011 and so
on. Note that the terminator symbol is encoded as 0011000.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 3

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

6.2 Upper case symbols

• For encoding uppercase letters in Set 1, the switch symbol is used followed
by 10 and the code against the symbol itself. For example, E is encoded
as 0010011. The same applies to tab character and &.

• For encoding uppercase letters in Set 1a, the switch symbol is used, fol-
lowed by 10, again switch symbol, followed by 0 and then the corre-
sponding code against the letter. For instance, the letter H is encoded
as 00100001010.

• Similarly, for uppercase letters in Set 1b, the prefix 001000110 is used. So
the symbol K is encoded as 0010001101010.

• If uppercase letters appear continuously, then the encoder may decide to
switch to upper case using the prefix 00100010. After that, the same
codes for lower case are used to indicate upper case letters until the code
sequence 0010 is used again to return to lower case.

6.3 Numbers and related symbols

• Symbols in Set 2 are encoded by first switching to the set by using 00
followed by 1110. So the symbol 9 is encoded as 001110010.

• For Set 2, whenever is switch is made from Set 1, it makes Set 2 active. So
subsequent numbers are encoded without the switch symbol, as in 1011
for 3, 1100 for 4 and so on.

• To return to Set 1, the prefix 0010 is used.

• To encode symbols in Set2a, if Set 2 is active, the prefix 00 is used followed
by 0 and the corresponding code for the symbol. For example, if Set 2 is
active, + is encoded as 0001011.

• If Set 1 is active, the prefix 11111 is used to encode symbols in Set 2a. So
for +, the code would be 111111011 in this case.

6.4 Other symbols (Set 3)

• The special characters in Set 3 can be encoded by using the prefix 001111
followed by the corresponding code for the letter. Example: ; is encoded
as 001111010.

• The symbols in Set 3a are encoded using the prefix 00111100. Example:
? is encoded as 00111100010.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 4

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

6.5 Sticky sets

• When switching to Set 2, it becomes active and is said to be sticky till Set
1 is made active using the symbol 0010.

• However, no other set is sticky. Set 1 is default. Set 2 automatically
becomes sticky when switched to it by using 001110 and Upper case letters
can be made sticky by using 00100010.

• Symbols in Set 3 and Set 3a are never sticky. Once encoded the previous
sticky set becomes active.

6.6 Special symbols

• term in Set 1b indicates termination of encoding. This is used if length of
the encoded string is not stored.

• rpt in Set 1b indicates that the symbol just encoded is to be repeated
specified number of times. As of now this is not implemented yet.

• dict in Set 1b indicates that the specified offset in file and length is to be
copied at the current position. This is dictionary based encoding. This is
also not implemented yet.

• rpt and dict would be eventually implemented. These do not occur in
Short strings frequently. However, these are expected to have an impact
and releatively longer strings.

• CRLF in Set 1a is encoded as a single code. It will be expanded as CRLF
or LF depending on the target OS. In this case, the term lossless encoding
is slightly deviated.

6.7 Dual access for Set 2a

• Set 2a can be accessed both when Set 1 and Set 2 is active. This is because
the symbols occur commonly in both Set 1 and 2. So it is necessary to
have minimum length codes for these.

• For the same reason, the space symbol appears both in Set 1 and Set 2a.

Based on the above rules the following Frequency table is formed.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 5

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

7 Frequency table

ASCII Code Letter Code Length
32 010 3
33 ! 001111001100 12
34 “ 0011111100 10
35 # 001111001010 12
36 $ 1111111110 10
37 % 1111111111 10
38 & 001011111 9
39 ’ 00111100011 11
40 (111111101 9
41) 111111110 9
42 * 0011111011 10
43 + 111111011 9
44 , 11111011 8
45 - 11111010 8
46 . 1111100 7
47 / 11111100 8
48 0 001110011 9
49 1 001110100 9
50 2 0011101010 10
51 3 0011101011 10
52 4 0011101100 10
53 5 0011101101 10
54 6 0011101110 10
55 7 00111011110 11
56 8 00111011111 11
57 9 001110010 9
58 : 001111011 9
59 ; 001111010 9
60 < 001111100 9
61 = 111111010 9
62 > 0011111010 10
63 ? 00111100010 11
64 @ 0011110000 10

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 6

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

ASCII Code Letter Code Length
65 A 00101010 8
66 B 00100001110 11
67 C 0010000010 10
68 D 0010000100 10
69 E 0010011 7
70 F 001000110010 12
71 G 001000011110 12
72 H 00100001010 11
73 I 00101100 8
74 J 0010001101100 13
75 K 0010001101010 13
76 L 001000000 9
77 M 00100001101 11
78 N 00101101 8
79 O 00101011 8
80 P 00100001100 11
81 Q 0010001101011 13
82 R 001011110 9
83 S 00101110 8
84 T 0010100 7
85 U 00100001011 11
86 V 001000110100 12
87 W 001000011111 12
88 X 0010001101101 13
89 Y 001000110011 12
90 Z 0010001101110 13
91 [0011111110 10
92 \ 001111001101 12
93] 0011111111 10
94 ˆ 00111100100 11
95 001111001011 12
96 ‘ 0011110011111 13

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 7

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

ASCII Code Letter Code Length
97 a 1010 4
98 b 0001110 7
99 c 000010 6
100 d 000100 6
101 e 011 3
102 f 00110010 8
103 g 00011110 8
104 h 0001010 7
105 i 1100 4
106 j 001101100 9
107 k 001101010 9
108 l 00000 5
109 m 0001101 7
110 n 1101 4
111 o 1011 4
112 p 0001100 7
113 q 001101011 9
114 r 11110 5
115 s 1110 4
116 t 100 3
117 u 0001011 7
118 v 00110100 8
119 w 00011111 8
120 x 001101101 9
121 y 00110011 8
122 z 001101110 9
123 { 0011111101 10
124 — 001111001110 12
125 } 0011111110 10
126 ˜ 0011110011110 13

Even after the freqency table is formed, the original model is still needed for
encoding Sticky sets as explained in the Rules section.

8 Implementation

According to the above Rules and Frequency table, a reference implementation
has been developed and made available at https://github.com/siara-cc/Shox96.
This is released under Apache License 2.0.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 8

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

9 Performance Comparison

The compression performance of all three techniques - Smaz, shoco and Shox96
were compared for different types of strings and results are tabulated below:

String
Length Smaz shoco Shox96

Hello World 11 10 8 8
The quick brown fox jumps over the lazy
dog

43 30 34 31

I would have NEVER said that 28 20 20 19
In (1970-89), $25.9 billion; OPEC bilat-
eral aid [1979-89], $213 million

67 65 48 45

Further - world95.txt - the text file obtained from The Project Gutenberg
Etext of the 1995 CIA World Factbook was compressed using the three tech-
niques and following are the results:

Original size: 2988577 bytes
After Compression using shoco original model: 2385934 bytes
After Compression using shoco trained using world95.txt: 2088141 bytes
After Compression using Shox96: 1904252 bytes
As for memory requirements, shoco requires over 2k bytes, smaz requires

over 1k. But Shox96 requires only around 95 ∗ 3 = 285 bytes for compressor
and decompressor together, ideal for using it with even Arduino Uno.

10 Proving guaranteed compression

Guaranteed compression means that the length of compressed text will never
exceed the length of the source text.

While it is not possible to prove it for any text, we can prove this for most
real life scenarios good enough for using it without fear of expansion of original
length.

At first we make the following assumptions for a given sentence in English
language:

• The sentence will start with a capital letter.

• The sentence will end in period (.).

• The sentence will have at least 3 words.

• Special characters other than a-z, A-Z and space will not be more than 2
or 3.

• Terminator symbol is not needed. That is, length of compressed string in
bits will be separately maintained.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 9

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

With the above assumptions, we try to prove guaranteed compression as
follows:

• Since the sentence will have atleast two spaces, it saves 5 + 5 = 10 bits.

• Since any English word will have a vowel and the average length of code
in our frequency table is 4, it will save another 12 bits, unless the vowel
’u’ appears in all three words, which is not likely in real life.

So, with a saving of atleast 22 bits, we can say it is more than sufficient to
offset for any symbol being used, such as Uppercase letter or Special character,
provided such letters do not exceed 4, since the maximum length of any code in
our frequency table is only 13. So if there are 4 such exceeding codes, it will
occupy at most (13− 8) ∗ 4 = 20 bits.

This assumption is towards defining a safe limit and since there will be more
savings because of the known general frequency of letters, we can safely assume
this guarantee.

11 Conclusion

As can be seen from the performance numbers, Shox96 performs better than
available techniques. It can also be seen that it performs better for a variety of
texts, especially those having a mixture of numbers and special characters.

12 Further work

We propose to improve Shox96 by including further rules for better compression.
We also propose to develop such models for other languages and types of text
such as Programs.

Further, we will be implementing the part for character repetition and dic-
tionary support in the near future.

13 About the Authors

Arundale R. has over 20 years of experience working in the IT industry. He
has worked alternatively in large Corporates, MNCs and Startups, including
Viewlocity Asia Pacific Pte. Ltd., IBC Systems Pte. Ltd. and Polaris Software
Lab Ltd. He has founded Siara Logics (cc) and Siara Logics (in) and publishing
his open source work at https://github.com/siara-cc and https://github.com/siara-
in. He has a masters degree in Computer Science from Anna University. He can
be reached at arun@siara.cc.

Charumathi A. is a budding Electronics and Communications Engineer study-
ing at Jerusalem College of Engineering, Chennai affiliated to Anna University.
She is passionate about building useful technical gadgets, 3d printing, technical
research and fashion designing. She can be reached at cm@cm21.in.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 10

Data Compression techniques • Information Theory • Shox96 - Guaranteed
Compression of Printable Short Strings

Harsha N. is a budding Computer Science Engineer studying at Jerusalem
College of Engineering, Chennai affiliated to Anna University. She is passionate
about building software projects in C and Java and technical research. She can
be reached at nnpharsha562@gmail.com.

References

[1] David MacKay. Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, 2003.

[2] Shannon, Claude E. (July 1948). ”A Mathematical Theory of Communica-
tion”, Bell System Technical Journal. 27

[3] D. A. Huffman, “A method for the construction of minimum-redundancy
codes“, Proc. IRE, vol. 40, pp. 1098-1101,1952.

[4] J. Ziv and A. Lempel. A Universal Algorithm for Data Compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977.

[5] M. Burrows and D. Wheeler. A Block-Sorting Lossless Data Compression
Algorithm. Research Report 124, Digital Equipment Corporation, Palo Alto,
CA, USA, May 1994.

[6] ”Statistical Distributions of English Text”. data-compression.com. Archived
from the original on 2017-09-18.

[7] What is the frequency of the letters of the alphabet in English?, Oxford
Dictionary. Oxford University Press. Retrieved 29 December 2012.

[8] Wikipedia, Letter frequency, https://en.wikipedia.org/wiki/Letter frequency,
updated December 2018.

[9] Salvatore Sanfilippo, SMAZ - compression for very small strings,
https://github.com/antirez/smaz, February 2012.

[10] Christian Schramm, shoco: a fast compressor for short strings,
https://github.com/Ed-von-Schleck/shoco, December 2015.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 11

